Tuesday, November 5, 2024 | 6:00 - 7:00 p.m.

PANEL	ID	SURNAME	TITLE	TOPIC
2	45	Rivero Silva	Neutrophils mitochondrial respiratory complexes are differen	Immunometabolism
4	72	Solleiro-Villavi	Examining the relationship between IL-10, apoptosis, and auto	Immunometabolism
6	92	Blanco	Unveiling metabolic mechanisms underlying triiodothyronine-	Immunometabolism
8	148	Vera Araya	Role of Glutaminolysis in Activated CD4+ T Lymphocytes in the	Immunometabolism
10	288	Puyssegur	Metabolomic changes induced by a gastrointestinal helminth	Immunometabolism
12	293	Maio	Plasma from pulmonary tuberculosis patients impacts on mor	Immunometabolism
14	315	Serrano Garrio	The Role of Visfatin in Inflammatory Pathways of NLRP3 Inflar	Immunometabolism
16	341	Barros	Monocytes reaching the pleural cavity become less glycolytic	Immunometabolism
18	364	Chipres Naran	The CD43 sialomucin promotes GLUT-1 expression in T cells	Immunometabolism
20	401	Arteaga	Adiponectin and Its Predictive Value in Metabolic Syndrome: I	Immunometabolism
22	436	Valeriano	Modulation of Macrophage Responses to Mycobacterial Infect	Immunometabolism
24	449	Calo	Pregnancy entails a metabolic rewiring of maternal circulating	Immunometabolism
26	454	Dias	Metabolic reprogramming mechanisms mediated by SREBPS of	Immunometabolism
28	455	Soares	Regulation of lipid metabolism in the activation of the inflamr	Immunometabolism
30	483	Santos	TARGETING ACYL-CoA:CHOLESTEROL ACYLTRANSFERASE DUR	Immunometabolism
32	488	PAPARINI	Sex differences in the effect of extracellular vesicles from hum	Immunometabolism
34	522	Fontanari	Exploring Mitochondrial Dynamics in Trypanosoma cruzi-Infec	Immunometabolism
36		Costa	Impact of high-intensity interval training on treg cells and insu	Immunometabolism
38	602	Vázquez	IgA leptin-reactive antibodies differ between individuals follow	Immunometabolism
40	648	dos Santos So	The role of the lipid droplets in the pathogenesis of Listeria m	Immunometabolism
42	652	Pirola dos San	HIF-1-alpha influences mitophagy through BNIP3 and Parkin-d	Immunometabolism
44	670	Aros Valdivia	?Assessment of the impact of mitochondrial fusion as a key m	Immunometabolism
46			Study of the immunomodulatory effect of mitochondria derive	Immunometabolism
48			Evaluation of CD38 activity during monocyte maturation into	
50	718	Pirán Arce	Impact of nutritional status on inflammatory processes in adu	Immunometabolism
52	27	Ruelas-Galind	Identification and characterization of new defense peptides w	Inflammation
54		· ·	Inmune profile of in vitro monocyte-derived macrophages ren	
56	95	Gomes Pereira	Lymphocyte Response in Walker 256 Tumor Progression: Com	
58			Activation of mast cells by snake venom toxins	Inflammation
60	103		Influence of Body Composition on Postprandial Glucose and T	
62			Identification of Interleukin-6 and its receptors in the aortic ba	
64		Peraçoli	TNF RECEPTORS POLARIZATION TO INFLAMMATORY PROFILE	
66		Peracoli	DOWNREGULATION OF NLRP3 INFLAMMASOME AND PYROPT	
68			IMMUNOMODULATORY EFFECTS OF BRAZILIAN GREEN PROPO	
70			ROLE OF CD44 RECEPTOR IN Th1/Th17/Treg SUBPOPULATION	
72			DOWNREGULATION OF M2-LIKE MONOCYTES IS ASSOCIATED	
74			DOWNREGULATED EXPRESSION OF IMMUNE CHECKPOINTS A	
76			MODULATION OF INFLAMMATION INDICATORS BY NATURAL	
78		Podzimek	Cytokine production by T lymphocytes of titanium hypersensi	
80			The polymorphism A>G of Interleukin-6 (rs1800797) is associa	
82			Extracellular Vesicles from neutrophils promote proinflammat	
84			Maternal obesity associates with altered humoral immunity in	9.7
86			Effect of probiotics in the protection of intestinal barrier follow	
88	129	Amezcua Vese	Dynamics of the B Lineage Response During Intranasal Immun	Mucosal Immunology

90			Axl-mediated signaling controls cigarette smoke lung inflamm	
92		Lezcano	A tryptophan metabolite, indol-3-propionic acid, reduces infla	
94		Bejarano	Spatial and phenotypic heterogeneity of intestinal macrophag	
96	216	Machicote	CD4+ T cell functional adaptation to microbiota manipulation	Mucosal Immunology
98	262	Massaro	Deciphering the role of Galectin-4 and its glycosidic ligands in	<u> </u>
100	270	Pastor	Studies on the functional role of tonsillar CD39highCD73+ B ce	Mucosal Immunology
102		Mazzitelli	Low pH acts as an environmental cue for the human tissue res	• • • • • • • • • • • • • • • • • • • •
104	351	Rojas Campiór	The dynamics of CD4+ T cells in tonsillar follicles and Epstein-E	9.
106	390	Comito	Environmental pollution, its effects on the ocular mucosa and	Mucosal Immunology
108			The Arp2/3 complex inhibitor, arpin, participates in epithelial	•
110	416	Quereda Corse	Amaranth peptides from functional food exhibit anti-inflamm	Mucosal Immunology
112	20	Dennis	A Chlamydia muridarum major outer membrane protein nano	Vaccines
114	48	Mendoza Ram	Immune response induced by plasmids that codify D-S1N and	Vaccines
116	53	Muniz-Lagos	Silver nanoparticles obtained by mycosynthesis as potential va	Vaccines
118	54	Simões de Me	Perspective and evaluation of a new vaccine for Neisseria mer	Vaccines
120	60	Alvarez Escala	Dendritic cell targeting using a DNA multiepitope vaccine agai	Vaccines
122	86	CARMO	EPIDEMIOLOGICAL ANALYSIS OF ACUTE FLACCID PARALYSIS IN	Vaccines
124	97	da Silva	Effect of different platforms of oral vaccines and contribution	Vaccines
126	144	Lastre	Challenges in Therapeutic and Prophylactic Mucosal Vaccine A	Vaccines
128	169	LOURENÇO	PRODUCTION AND EVALUATION OF THE IMMUNOGENICITY O	Vaccines
130	210	Chavero	Characterization of a nanoparticle-based vaccine as a booster	Vaccines
132	229	García De Leó	ISCOM-matrices adjuvanted Influenza vaccine: immune respons	Vaccines
134	241	Prado	Co encapsulation of antigens and adjuvants in polymeric nano	Vaccines
136	248	Gamba	ARTIFICIAL INTELLIGENCE-ASSISTED IDENTIFICATION OF POTEI	Vaccines
138	251	Ruiz Fernande	Peripheral blood B lymphocyte subpopulations and its relation	Vaccines
140	256	Bulfoni Balbi	IMPACT OF SEX HORMONES ON IMMUNE RESPONSE AND MY	Vaccines
142	312	Ruiz Moreno	Nanoformulation of Vaccine Components Enhances Antigen-S	Vaccines
144	333	Carriquiribord	Combination of baculovirus and flagellin to be used as vaccine	Vaccines
146	359	Flores Guirado	Insights into Differential Reprogramming and Trained Immuni	Vaccines
148	23	Asia	HIV-1 Tat amino acid variants N24 and R57 associates with dy	Immunometabolism
150	38	Alves Damasc	Peroxisome proliferator-activated receptor gamma coactivato	Immunometabolism
152	75	MENDEZ	Is the Th2 immune response the underlying mechanism between	Immunometabolism
154	204	de Souza Cost	Lipid metabolism modulates dendritic cell activation, inflamm	Immunometabolism
156	299	Merech	Pregnancy promotes maternal monocyte fatty acid metabolism	Immunometabolism
158	43	Chagas	Mapping linear antibody epitopes in COVID-19 infection	Vaccines
160	96	Godoi	Extended identification of enzymatic peptides in a representa-	Vaccines
162	320	De Araújo	Rational Identification of a Multivalent Vaccine Candidate from	Vaccines
164		de Oliveira	Characterization of a new mitochondrial protein from Leishi	Vaccines